Department of Electrical Engineering			
Electrical Circuits II (63212)			
Total Credits	3		
major compulsory			
Prerequisites	P1 : Electrical Circuits I (63211)		
Course Contents			

Power calculation, three phase circuits, series and parallel resonance, two port networks and Laplace transformation

	Intended Learning Outcomes (ILO's)	Student Outcomes (SO's)	Contributio n
1	The student should be able to understand the basic	Α	45 %
	concepts of power quantities and poly phase systems,		
	mainly the three phase system.		
2	The student will be able to identify and assessfrequency	С	20 %
	response and response concept		
3	The student will be able to identify and assessthe two port	E	35 %
	network concept, Laplace transform and its application in		
	circuit analysis.		

Textbook and/ or Refrences

William H. Hayt, Jack E. Kemmerly ,Engineering Circuit Analysis, 6th Edition McGraw-Hill,INC

<u> </u>	•
Assessment Criteria	Percent (%)
First Exam	15 %
Second Exam	20 %
Quizzes	15 %
Final Exam	50 %

Course Plan

Wee	Topic	
k		
1	Average power and rms values: Introduction, instantaneous power, the average power	
	the effective values of current and voltage	
_ 2	Apparent power ,the power factor ,the complex power	
3	Reactive power compensation	
4	Poly phase circuits: introduction, single-phase three-wire systems, three-phase Y-Y	
	connection	
5	The Delta connection, the Y-Delta connection	
6	The Delta-Y connection, the Delta Delta connection	
7	Exercises on three phase power circuits and reactive power compensation	
8	First Hour Exam	
9	Frequency response: Parallel resonance, Series resonance,	
10	Other Resonance forms	
11	Two Port Networks: One port Networks, Admittance parameters Impedance parameters	
12	Two Port Networks: Hybrid parameters, Transmission parameters	
13	Second hour exam	
14	Complex Frequency and Laplace Transforms	
15	Circuit Analysis in S- domain	
16	Final exam	