Department of Electrical Engineering			
Electromagnetic I (63270)			
Total Credits	3		
major compulsory			
Prerequisites	P1 : Electrical Circuits I (63211)		
Course Contents			

Electrostatic fields; Potential; Dielectrics; Steady Current; Electrical Materials; Boundary conditions; Magneto-static Fields; Differential and integral forms of Maxwells equations for static and steady fields.

	Intended Learning Outcomes (ILO's)	Student Outcomes (SO's)	Contribution
1	Using vector algebra, vector calculus, and physical principles to solve static and steady field problems	Α	45 %
2	Analysis and design of resistors and capacitors and the calculations of associated parameters.	С	10 %
3	Solution of electrostatic and magneto-static problems (ie: electrostatic and magnetostatic fields). As well as solving for charges, currents, potentials and energy. Also applying boundary conditions.	E	45 %

Textbook and/ or Refrences

Engineering Electromagnetics, William H. Hayt and John A. Buck; 8th Edition; McGraw-Hill International Editions, 2012. Field and Wave Electromagnetics, David K. Cheng; Addison-Wesley Publishing Company; Second Edition 1989. Web resources.

Assessment Criteria	Percent (%)
First Exam	15 %
Second Exam	15 %
Quizzes	10 %
Projects	10 %
Final Exam	50 %

Course Plan		
Wee	Topic	
k		
1,2	Vector Analysis: Scalars &vectors Vector algebra; The Cartesian coordinate system;	
	Vector components and unit vectors; Vector field; Dot product; Cross product; Cylindrical	
	coordinate system; Spherical coordinate system.	
3,4	Electrostatics: Coulomb law; Electric field intensity; Field of several point charges; Field of	
	a continuous charge distribution;	
5	Electric flux density; Gausss law; Examples for Gauss law;	
6,7	Divergence; Maxwells first equation; The del operator and the divergence theorem;	
	Energy and Electric field; Line integral; Potential difference and potential; First Exam	
8	Solution of first exam; Conservative Field; Potential gradient; Electric Dipole; Electric	
	Energy density.	
9	Electrical Materials: Current and current density; Continuity of Current; Metallic	
	conductors;	
10	Conductor properties and boundary conditions; Method of images; Breif introduction to	
	superconductors and semiconductors	
11	Dielectrics, Boundary conditions for dielectrics; Capacitance Second Exam	

12	Poissons and Laplaces equations: Examples of the solution of the one dimensional	
	Laplaces and Poissons equations.	
13	Magneto-static: Biot-Suvart law; Amperes law; Curl;	
14	Stokes theorem; Magnetic flux and magnetic flux density; Vector and scalar Magnetic	
	potential; Summary of Maxwells equations for static and steady fields.	
15	General review	