Department of Electrical Engineering			
System &Signal Analysis (63373)			
Total Credits	3		
major compulsory			
Prerequisites	P1 : Electrical Circuits II (63212)		
Course Contents			

Continuous-time signals and systems, Continuous-time linear time-invariant systems, impulse response, convolution, system properties, relation to differential equations, Fourier series, Fourier transform, Applications involving the Fourier transform, Sampling, Discrete-time signals and systems, Discrete-time linear time-invariant systems, Fourier analysis of discrete-time signals/systems, DTFT, Z-transforms

	Intended Learning Outcomes (ILO's)	Student Outcomes (SO's)	Contribution
1	Student will be able to demonstrate and understand the	E	20 %
	basics of CT and DT of signals and systems, fundamentals		
	and properties, properties of LTI system, singularity functions,		
	difference and differential equations		
2	Student will be able to demonstrate and understand of Fourier	Α	50 %
	series ,Fourier transform for CT and DT signals , convolution		
	and the basics of filtering		
3	Student will be able to use Bode, FT, DFT, Fourier series, Z-	E	30 %
	transform and Matlab-based methods to analysis CT and DT		
	signals and systems		

Textbook and/ or Refrences

Signals &systems, 2nd edition by A. V. Oppenheim, A. S. Willsky Signals &Systems Continuous and Discrete, 4th edition by R. E. Ziemer

Assessment Criteria	Percent (%)
First Exam	20 %
Second Exam	20 %
Homeworks	10 %
Final Exam	50 %

Course Plan Wee **Topic** k 1 Basic CT and DT signal and systems, system properties Elementary complex signals, Unit impulse and unit step function 2 3 Periodic signals, fundamental properties of systems. The convolution sum and integral 4 Properties of LTI systems 5 Difference and differential equations and singularity functions Fourier series analysis of CT and DT signals, properties of CT and DT Fourier series 6 **MIDTERM EXAM 1** 7 Fourier series and LTI systems, filtering 8 CT Fourier transform representation of periodic and periodic signals 9 Properties of the CT Fourier transform 10 Basic fourier transform pairs 11 12 DT Fourier transform MIDTERM EXAM 2 13

14	Representation of aperiodic and periodic signals, Properties of the DT Fourier transform,	
	basic DFT pairs	
15	Z- Transform	
16	Final Exam	