Total Credits major compulsory Prerequisites P1 : Computer Programming (66111) Course Contents	Department of Computer Engineering		
major compulsory Prerequisites P1 : Computer Programming (66111)	Data Structure and Algorithms (66211)		
Prerequisites P1 : Computer Programming (66111)	Total Credits	3	
1 0 0 7	major compulsory		
Course Contents	Prerequisites	P1 : Computer Programming (66111)	

Introduction to object oriented programming in C++, Basic data structures: stacks, queues, trees, binary trees, balanced search trees, Graphs, hash tables and hash functions, list representation and string representation.

_	Intended Learning Outcomes (ILO's)	Student Outcomes (SO's)	Contribution
1	Demonstrate an understanding of object oriented	Α	10 %
	programming concepts (class, inheritance, templates,		
	functions and operators overloading) and how they are		
	supported by C++ language.		
2	Describe the usage of various data structures and explain	С	70 %
	the operations for maintaining common data structures.		
3	Design and apply appropriate data structures for solving	E	20 %
	computing problems and recognize the associated		
	algorithms and complexity		

Textbook and/ or Refrences

Data Structures Using C++, 2nd edition, D.S. Malik, Data Structure and Program Design in C++, Robert L. Kruse and Alexander J. Ryba.

Assessment Criteria	Percent (%)
First Exam	20 %
Second Exam	20 %
Homeworks	10 %
Projects	10 %
Final Exam	40 %

Course Plan Wee **Topic** k 1-3 |Introduction (C review, Structures, File Processing, C++ features such as: overloading and Inline functions, C++ classes: constructors, destructor, and operator overloading. Inheritance, Templates). Linked Lists (Operations on lists, Doubly linked lists, Circular lists). 4 5-6 Stacks (Definition and operations, Stack specifications, Implementation of stack as an array, Implementation of stack as a linked list) First exam Queues (Definition and operations, Implementation of gueues, Circular implementation of queues in C++, Linked Queues). Trees (General trees, Binary trees, Binary search trees., Implementation of trees, 8-9 Balanced search trees) Tables and information retrieval (Shapes of tables., Direct address tables, Hash tables, 10-Hash functions, Collision resolution, Analysis of hashing, Universal and perfect hashing) 11 10 Second exam Graphs (Definitions and examples, Undirected graphs, Directed graphs, Computer 12-

13	representations, Graph Traversal, Shortest Paths, Minimum Spanning Trees).	
14-	List Representation (Contiguous representation, Linked representation, Strings)	
16	List representation (Contiguous representation, Elliked representation, Othings)	
14-	Introduction to complexity analysis (Average case analysis, Worst case analysis, Memory	
_16	usage,Sorting and searching examples).	
16	Final exam	